Attributes Reduction Based on GA-CFS Method
نویسندگان
چکیده
The selection and evaluation task of attributes is of great importance for knowledge-based systems. It is also a critical factor affecting systems' performance. By using the genetic operator as the searching approach and correlation-based heuristic strategy as the evaluating mechanism, this paper presents a GA-CFS method to select the optimal subset of attributes from a given case library. Based on the above, the classification performance is evaluated by employing the combination method of C4.5 algorithm with k-fold cross validation. The comparative experimental results indicate that the proposed method is capable of identifying the most related subset for classification and prediction with reducing the representation space of the attributes dramatically whilst hardly decreasing the classification precision.
منابع مشابه
Novelty Search for the Synthesis of Current Followers
A topology synthesis method is introduced using genetic algorithms (GA) based on novelty search (NS). NS is an emerging meta-heuristic, that guides the search based on the novelty of each solution instead of the objective function. The synthesized topologies are current follower (CF) circuits; these topologies are new and designed using integrated circuit CMOS technology of 0.35μm. Topologies a...
متن کاملFeature Subset selection in Medical Data Mining using cascaded GA & CFS: A filter approach
Medical data mining has enormous potential for exploring the hidden patterns in the data sets of the medical domain. These patterns can be utilized for clinical diagnosis. Data preprocessing is a significant step in the knowledge discovery process, since quality decisions must be based on quality data. Feature subset selection is one of data preprocessing step, which is of immense importance in...
متن کاملClassification and Progression Based on CFS-GA and C5.0 Boost Decision Tree of TCM Zheng in Chronic Hepatitis B
Chronic hepatitis B (CHB) is a serious public health problem, and Traditional Chinese Medicine (TCM) plays an important role in the control and treatment for CHB. In the treatment of TCM, zheng discrimination is the most important step. In this paper, an approach based on CFS-GA (Correlation based Feature Selection and Genetic Algorithm) and C5.0 boost decision tree is used for zheng classifica...
متن کاملProjection-based measure for efficient feature selection
The attribute selection techniques for supervised learning, used in the preprocessing phase to emphasize the most relevant attributes, allow making models of classification simpler and easy to understand. Depending on the method to apply: starting point, search organization, evaluation strategy, and the stopping criterion, there is an added cost to the classification algorithm that we are going...
متن کاملA Method for Handling Numerical Attributes in GA-Based Inductive Concept Learners
This paper proposes a method for dealing with numerical attributes in inductive concept learning systems based on genetic algorithms. The method uses constraints for restricting the range of values of the attributes and novel stochastic operators for modifying the constraints. These operators exploit information on the distribution of the values of an attribute. The method is embedded into a GA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007